
Build apps, not
platforms: operational
maturity in a box

17/11/2022 // Disneyland ParisOri Pekelman

// Some assumptions coming into the talk

● By now, for most people coming to a talk like this the
cloud is a given: Cloud Good ✓.

● By now, for most people coming to a talk like this
DevOps practices are a given: DevOps Good ✓.

● So we are going to talk about a specific responsibility
within Cloud DevOps which is Platform Engineering ✓

● Platform Engineering Good ?

Assumptions
ahead

// Platform Engineering

Whats is it? “Platform engineering emerged in response to the
increasing complexity of modern software
architectures. Today, non-expert end users are often
asked to operate an assembly of complicated arcane
services,”

Says Paul Delory, VP Analyst at Gartner.

“To help end users, and reduce friction for the valuable
work they do, forward-thinking companies have begun
to build operating platforms that sit between the end
user and the backing services on which they rely.“

// What defines Operational Maturity?

Its not complete, but let’s try this definition. Operational
Maturity is comprised of:

1. A the strict definition of what a non-failing system looks
like.

2. Failure Scenarios you test against.
3. Failure modes and their indicators
4. Indicators of the time, cost and end-state of returning

to a non-failing state.
5. Handling failures often

?

//

1. Multi-layered observability that tries to capture both
positive and negative signals (system is working within
defined SLI parameters).

2. Automated failover and mitigations for some of the
negative signals

3. People trained to observe these signals and the
availability of said people

4. Processes to handle unknown failure modes
5. Run a lot of tests, often - and not only the automated

ones

How do you achieve Operational Maturity?

A segway about me
And a short anecdote

//

Hi, I am Ori
Pekelman, One of
the founders of
Platform.sh

I am now Chief Strategy
Officer. I used to be
Product. Also I like serious
titles.

// I am also a
developer

Really.

* You gotta love stable diffusion

// Startups are a
wild thing, for
a time I ran
marketing…

* Apex Predators having a cuteness competition

// When you are
a developer …
and you run
marketing…

//

// When
SalesOps is
not your day
job.

//

Back to the actual talk
And to the voyage to Cloud Nativity

//

// Six years ago I
did the same
presentation
here

At the time the title
was “How to build
cloud native
applications” and it
was in French but it
was basically the same
subject.

// Basically, how
and why do
we go from…

PHP

MySQL

Apache

Linux

// To…

And how to keep
things simple.

I told things about
Infrastructure as Code

CDN

Entry Point Entry Point Entry Point

DB DB

Web Server

App1 App2 App3

DB

Web Server

CACHE

Web Server

App1 App2 App3 App1 App2 App3

Search Engine

Message Queue

Distributed File-System

Underlying Cloud

Container Run-Time

Linux

// Running programs on
computers.

// Computers are
simple.

1. CPU and Memory
2. Disk
3. Networking
4. Processes
5. Names that map to processes

exposed on a network.

From: David Cushman’s The Simplest Possible Tutorial..
Understanding How Computers Work

// You can add a
couple of
things to be
more
complete.

1. Using CPU memory and disk and
exposing themselves for the
network that will give them a name

2. P̀rocesses are the result of source
code

3. Source code needs to be built in
order to run

The non-simple part
is running programs
written by a bunch
of humans using
third party libraries
that change with a
certain level of
quality within a
defined rhythm of
change when there
are going to be
many uses to your
program

// Infrastructure as
code to the
rescue

1. We are developers…
2. It’s just code…
3. We can add it under Git control

add some tests…
4. And every time the code

changes we just run it through
a pipe-line…

// The Business
Domain of
Infrastructure
as Code

1. The same way SalesForce Apex
code manages leads and
opportunities

2. IaC code manages … well code,
and its relationship to the
underlying infrastructure

"$schema":
"https://schema.management.azure.com/schemas/2019-04-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "metadata": {
 "_generator": {
 "name": "bicep",
 "version": "0.4.1008.15138",
 "templateHash": "8636947863337745424"
 }
 },
 "parameters": {
 "storageAccountName": {
 "type": "string"
 },
 "containerName": {
 "type": "string",
 "defaultValue": "logs"
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "functions": [],
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-06-01",
 "name": "[parameters('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "StorageV2",
 "properties": {
 "accessTier": "Hot"
 }
 },
 {
 "type":
"Microsoft.Storage/storageAccounts/blobServices/containe
rs",
 "apiVersion": "2019-06-01",
 "name": "[format('{0}/default/{1}',
parameters('storageAccountName'),
parameters('containerName'))]",
 "dependsOn": [

"[resourceId('Microsoft.Storage/storageAccounts',
parameters('storageAccountName'))]"
]
 }
]

}

// In six years
what “cloud
native” means
changed a lot,
the “business
domain”
evolved.

In 2006 AWS was: S3, EC2, SQS

By 2009 SimpleDB, Elastic IPs, EBS, Cloud
Front, Amazon Elastic MapReduce, ELB, VPCs,
RDS

By 2012 SNS, CloudFormation, Route 53, Elastic
Beanstalk, SES, Dynamo DB, IAM, Glacier,
RedShift

By 2015 CloudHSM, Cloud Trail, Kinesis, Aurora,
KMS, ECS, Lambda, CodePipeline, API Gateway,
Elastic Search, Inspector, Snowball, ECR, ML
Platform, IOT Platform, Auto Scaling, ACM,
EFS....

In 2022 there are more than

289 distinct

products.

Just from AWS.

// Six years ago

I contrasted LAMP to what a “modern
architecture” would look like.

Adding into the mix an Edge Layer,
Multi-tiered Caching, a message queue,
Redundant Storage and Replicated
databases, and a Converged Storage
Layer.

All with an integrated CI/CD, backed by
GitOps

 ~ 4 Concepts

+8 Concepts

//

Many

Concepts

Many
Concepts M

an
y

Conce
pts

// Platform Engineering

Whats is it? Gartner expects that by 2026, 80% of software
engineering organizations will establish platform
teams as internal providers of reusable services,
components and tools for application delivery.

Platform engineering will ultimately solve the central
problem of cooperation between software
developers and operators.

// Platforms Vs DevOps

What is the
difference
between DevOps
and Platform
Engineering?

Contrast this to what Gartner said about DevOps in
2016:

Organizations with agile development will be slower
to embrace DevOps across the entire application life
cycle. Cultural resistance and low levels of process
discipline will create significant failure rates for
DevOps initiatives, particularly when waterfall
processes are still a dominant portion of the
development portfolio. Nevertheless, a majority of
enterprises attempting to scale agile over the next
five years will recognize the need for DevOps
initiatives.

// What “Platforms” mean also changed.

Platforms in 2008 needed
to basically handle:

PHP

MySQL

Apache

Linux

In 2016 they needed to do
this, as a bare minimum:

And that is before you run any machine-learningy things at the edge. Before
you get into consideration dynamic scaling and handling new forms of DDOS
attacks. Before you consider your carbon footprint. Before you consider cost.

//

DevOps
Implementation
Modes

DevOps
responsibilities

CI/CD Practices

DevOps Culture

● Infrastructure-as-code
● Infrastructure Management
● Pipeline automation
● Platform Building

● Continuous Integration
● Continuous Testing
● Continuous Monitoring
● Pipeline automation
● Continuous Delivery

● Collaboration
● Common Paradigmes
● Knowledge Sharing

DevOps As a Job Desc, DevOps as a culture

// DevOps vs Platform Engineering

What is the
difference
between DevOps
and Platform
Engineering?

DevOps is a philosophy, a cultural shift that merges
operations with development and demands a linked
toolchain of technologies to facilitate collaborative
change.

Platform Engineering is solving all of the huge
problems that arose as soon as the above became
“use Kubernetes” and a dozen or so tools to “simplify
Kubernetes”.

But it’s also back to 2008 and the promises the cloud
initially had about simplicity.

// Roles and responsibilities

Developers SREs DevOps Ops IT

Code 7 5 2 -2 -7

Continuous
Integration

5 5 7 2 -2

Deployment 2 2 7 2 -2

Incident
Management

0 7 5 7 3

Performance
Management

0 7 5 7 4

Infrastructure
Management

-2 2 7 10 7

Cost Management -5 2 5 7 10

// In six years
what “cloud
native” means
changed a lot

Developers

Well, not that much changed for us.
We still just write code. And tests. In
whatever order.

// Our job stayed
the same. But
I can’t say
their’s became
any easier

// In six years
what “cloud
native” means
changed a lot

“On the other side” even the titles of the
people actually making it happen changed
quite a bit …

Sys Admin DevOps SRE

// Platform
Engineer

// Operational
maturity is
not about
green

And it’s not about not
having failures.

Everything fails. All
the time. This is cloud
and this is software.

Everything is
horrendously broken.

// It’s about
red

Having a lot of
automation for the
normal kind of red.

Disks frying. Hosts
dying.

And having people
that can handle a new
shade of red.

You know, unknown
unknowns.

//

Ah, is this the actual
talk yet?

Yes, almost ….

//

// Standard
deployment
workflow

Standard
deployment
workflow

// Building
in-house

Each phase requires people,
configuration and tooling to
make it run efficiently and
consistently.

And now you need to do it twice.

//
.platform.app.yaml

name: ‘symfony’

type: ‘php:8.1’

relationships:

 database: ‘db:postgresql’

mounts:

 "/var/cache": "shared:files/local”

.platform/services.yaml

db:

 type: postgresql:13

 disk: 2048

Not all code is
equal and
semantics
matter

//

When the infrastructure is a
dependency the contract
matters.

Are PORTS part of my
software definition? Part of
the infrastructure definition?

Is it Apache that is my
dependency or a reverse
HTTP ?Am I locked to minor
versions? To major ones?

version: "3.8"
services:
 db:
 image: mysql
 container_name : db_docker_symfony
 restart: always
 volumes:
 - db-data:/var/lib/mysql
 environment:
 MYSQL_ALLOW_EMPTY_PASSWORD : 'yes'
 networks:
 - dev
 www:
 build: php
 container_name : www_docker_symfony
 ports:
 - "8741:80"
 volumes:
 - ./php/vhosts:/etc/apache2/sites-enabled
 - ./:/var/www
 restart: always
 networks:
 - dev
networks:
 dev:
volumes:
 db-data:

And it’s not
just about
verbosity

//

The style of code, its
semantics are going to have
a huge impact down the
line.

Descriptive and imperative
styles are not the same.

And their relationship to
version control is
paramount.

- name: Setting up LAMP Website
 user: symfony
 hosts: testserver
 become: yes
 tasks:
 - name: latest version of all required packages installed
 yum:
 name:
 - httpd
 - mariadb-server
 - php
 - php-mysql
 state: latest

 - name: Copy mime.types file
 copy:
 src: /etc/mime.types
 dest: /etc/httpd/conf/mime.types
 remote_src: yes

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

 - name: mariadb enabled and running
 service:
 name: mariadb
 enabled: true
 state: started

 - name: test the webpage/website we have setup
 uri:
 url: http://{{ansible_hostname}}/index.php
 status_code: 200

How
reproducible
are you?

//
.platform.app.yaml

name: ‘symfony’

type: ‘php:8.1’

relationships:

 database: ‘db:postgresql’

mounts:

 "/var/cache": "shared:files/local”

.platform/services.yaml

db:

 type: postgresql:13

 disk: 2048

What happens
when we
change …

//
.platform.app.yaml

name: ‘symfony’

type: ‘php:8.2’

relationships:

 database: ‘db:postgresql’

mounts:

 "/var/cache": "shared:files/local”

.platform/services.yaml

db:

 type: postgresql:14

 disk: 2048

To…

What is Platform.sh?
Platform.sh is a multi-cloud software orchestration solution that
encapsulates the full life-cycle of a software project. Including all of the
dependencies, from the first lines of code to run & scale.

It targets the specific use-case of organizations that manage a large
number of web applications and web sites.
It is an abstraction of everything software needs in order to run.
It is a contract that explains how a particular piece of software can be
run. It is a control plane and a single pane of glass.

Its ambition is to help developers develop, deploy and manage with ease
not only singular projects but also fleets of applications.

Platform.sh delivers a framework
(Platform-as-a-Service) to build, run, and
effortlessly scale web applications.

Project Control Plane

You still want to build a platform?
A note about APIs, system boundaries and the double control plane.

Infrastructure Control Plane

Remember this?

Correct system boundaries are key.

The Program The Computer

The Platform

Knows everything about the
project and its life-cycle.

Describes its *minimal*
infrastructure deps.

Knows everything about hosts,
storage and containers.

To the growing complexity, the answer has been: more tools and greater complexity.

On average, DevOps teams use between 10 and 15 tools

App definition and
developmentApp Definition and
Development

Orchestration and
management

Runtime

Provisioning

Observability

A disconnected patchwork of tools.

Each with its own learning curve.

Each with its own quirks, SLAs,
pricing schemes and lockin risks.

In a regulatory environment that is
becoming ever increasingly stringent.

* Source: cncf.io

AICPA SOC GDPR

HIPAAPIPEDA

PCI DSS

Developers
bring their
code, we bring
the rest

Platform.sh offers a unified, secure,
enterprise-grade platform for
responsibly building, running and
scaling fleets of websites and
applications.

From
Monoliths to
anything..

Just an app, but API first + Microservices

Just an App

Composable
Cloud
Infrastructure

Global consumer goods company

Backend ecommerce (Symfony)

Frontend (Next.js)

Backend CMS (Strapi)

Microservice (Koa.js)

Thank you! Ori Pekelman

Chief Strategy Officer,
Platform.sh

